Preliminary Note

A novel preparation of trans-1-bromoperfluorovinyl compounds

RICHARD D. HOWELLS AND HENRY GILMAN

Department of Chemistry, Iowa State University, Ames, Iowa 50010 (U.S.A.) (Received September 26, 1973)

When perfluoroalkyl iodides are reacted with an alkyl- or aryl-magnesium bromide, a quantitative or nearly quantitative exchange takes place $^{1-6}$:

$$R_fI + RMgBr \rightarrow R_fMgBr + RI$$

We have found that the major product from the slow thermal decomposition of R_fMgBr in ether or pentane (Skelly A) solvents is a *trans*-1-bromoperfluorovinyl compound.

For example, the products of decomposition of the perfluoro-octylmagnesium bromide are the *trans*-1-bromoperfluorovinyl compound (50–60%), the terminal perfluoro-olefin (ca. 10%), an internal olefin of molecular formula $C_{16}F_{32}$ (ca. 20%) and several very minor unidentified products including a compound presumed to be a *trans*-1-alklyperfluorovinyl compound (ca. 1–4%). The reaction appears to be general for perfluoroalkylmagnesium bromides obtained from $n-C_6F_{13}I$, $n-C_8F_{17}I$ and $n-C_{10}F_{21}I$.

The slow thermal decomposition of the corresponding perfluoroalkyl-magnesium iodides results in formation of the *trans*-1-iodoperfluorovinyl compounds which are isolated in significantly lower yields than the bromo-substituted olefins obtained from the perfluoroalkylmagnesium bromides. Presumably this is due to the less favorable equilibrium involved in the formation of the perfluoroalkylmagnesium iodide.

$$R_fI + RMgI \longrightarrow R_fMgI + RI$$

Slightly higher isolated yields of the trans-1-bromoperfluorovinyl compounds (ca. 50%) were obtained when MeMgBr was employed for the halogen-metal exchange instead of EtMgBr. A typical procedure involved addition of EtMgBr (0.021 mol) to a stirred solution (slurry at -78 °C) of n-C₈F₁₇I (0.020 mol) in ca. 125 cm³ of anhydrous ether. After 0.5 h at -78 °C, the reaction mixture was allowed to warm slowly (1–6 h) to room temperature. Magnesium salts were removed by washing with 2.0 mol 1⁻¹ HCl followed by several washings with water. Distillation of the reaction mixture provided 4.35 g (47%) of ca. 96% pure trans-

248 PRELIMINARY NOTES

1-bromopentadecafluoro-oct-1-ene, b.p. 78–80 °C / 92 mmHg. Preparative GLC (SE-30) provided an analytically pure sample, b.p. 140 °C (micro); n_D^{25} 1.3215; IR (neat): v(C=C) 1710 cm⁻¹ and v(C-F) 1100–1400 cm⁻¹; ¹⁹F NMR (in CCl₄) $\begin{bmatrix} R_f CF_2 \\ F_b \end{bmatrix} C = C \begin{bmatrix} F_a \\ Br \end{bmatrix}$: -105.7 ppm [dtt, $J(F_a, F_b) = 141$ Hz, $J(F_a, CF_2) = 26$ Hz, $J(F_a, CF_2 CF_2 R_f) = 5$ Hz, F_a], -154.0 ppm (dm, F_b), -81.7 ppm (t, C_a), and broad multiplets at -117.6 (- C_a). The mass spectrum confirmed the presence of onc bromine atom with parent ions of equal intensity at m/e 460 and 462 (mol. wt. 461), and base peaks of equal intensity at m/e 191 and 193 ($C_3F_4Br^+$). Analysis: Found: C, 20.10, 20.80; Br, 17.51%. $C_8F_{15}Br$ requires C, 20.84; Br, 17.34%. The only compounds of the type C_a reported are those with C_a are C_a and C_a compounds of the gright and lithium reagents which may be obtained in high yield from the C_a trans-1-bromoperfluorovinyl compounds.

Results have been reported for perfluoroisopropylmagnesium bromide which gave perfluoropropene $(70.5\%)^4$ and for perfluoropropylmagnesium iodide which gave heptafluoropropane (76%) and perfluoropropene $(6\%)^8$.

Support of this research by the National Science Foundation (GP-34632) is gratefully acknowledged. We also thank Dr. R. H. Gobran and Dr. F. J. Marshall for assistance.

REFERENCES

- 1 O. R. PIERCE, A. F. MEINERS AND E. T. McBEE, J. Amer. Chem. Soc., 75 (1953) 2516.
- E. T. McBee, A. F. Meiners and C. W. Roberts, Proc. Indiana Acad. Sci., 64 (1955) 112;
 A. F. Meiners, Ph. D. Thesis, Purdue University, Purdue, Indiana, 1956.
- 3 E. T. McBee, C. W. Roberts and A. F. Meiners, J. Amer. Chem. Soc., 79 (1957) 335.
- 4 R. D. CHAMBERS, W. K. R. MUSGRAVE AND J. SAVORY, J. Chem. Soc., (1962) 1993.
- 5 M. R. SMITH, JR., D. S. SETHI, B. B. SINGH AND H. GILMAN, unpublished studies.
- 6 M. R. SMITH, JR. AND H. GILMAN, J. Organometal. Chem., 46 (1972) 251.
- 7 M. G. BARLOW, Chem. Commun., (1966) 703.
- 8 R. N. HASZELDINE, J. Chem. Soc., (1952) 3423.